A characterization of a two-weight norm inequality for maximal operators
نویسندگان
چکیده
منابع مشابه
A NORM INEQUALITY FOR CHEBYSHEV CENTRES
In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...
متن کاملCharacterization of a Two-weighted Vector-valued Inequality for Fractional Maximal Operators
We give a characterization of the weights u(·) and v(·) for which the fractional maximal operator Ms is bounded from the weighted Lebesgue spaces Lp(lr, vdx) into Lq(lr, udx) whenever 0 ≤ s < n, 1 < p, r < ∞, and 1 ≤ q < ∞.
متن کاملTwo weight norm inequalities for fractional one-sided maximal and integral operators
In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: Z +∞ −∞ M α (f)(x) w(x) dx ≤ Ap Z +∞ −∞ |f(x)|M αp(w)(x) dx, where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral I α .
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولa norm inequality for chebyshev centres
in this paper, we study the chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. in particular, we prove that if t is a remotal subset of an inner product space h, and f is a star-shaped set at a relative chebyshev centre c of t with respect to f, then llx - qt (x)1i2 2 ilx-cll2 + ilc-qt (c) 112 x e f, where qt : f + t is any choice function s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1982
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-75-1-1-11